A Performance evaluation of neural network models in traffic volume forecasting
نویسندگان
چکیده
منابع مشابه
Comparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange
During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...
متن کاملPerformance evaluation of chain saw machines for dimensional stones using feasibility of neural network models
Prediction of the production rate of the cutting dimensional stone process is crucial, especially when chain saw machines are used. The cutting dimensional rock process is generally a complex issue with numerous effective factors including variable and unreliable conditions of the rocks and cutting machines. The Group Method of Data Handling (GMDH) type of neural network and Radial Basis Functi...
متن کاملTowards Defining Evaluation Measures for Neural Network Forecasting Models
There is diversity in the use of global goodness-of-fit statistics to determine how well models forecast flood hydrographs. This paper compares the results from nine evaluation measures and two forecasting models. The evaluation measures comprise global goodness-of-fit measures as recommended by Legates and McCabe (1999) and Smith (2000) and more flood specific measures which gauge the ability ...
متن کاملAn Approach to Traffic Volume Forecasting Based on Ant Colony Neural Network
Combining the ant colony algorithm (ACA) and the neural network (NN), the present paper puts forward an approach to traffic volume forecasting based on the ant colony neural network. The approach employs the ACA with mutation features to train the weights of an artificial neural network (ANN), thus it is characterized by large mapping capacity of the NN, and by rapidity, global convergence, and...
متن کاملEvolving Time Series Forecasting Neural Network Models
In the last decade, bio-inspired methods have gained an increasing acceptation as alternative approaches for Time Series Forecasting. Indeed, the use of tools such as Artificial Neural Networks (ANNs) and Genetic and Evolutionary Algorithms (GEAs), introduced important features to forecasting models, taking advantage of nonlinear learning and adaptive search. In the present approach, a combinat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 1998
ISSN: 0895-7177
DOI: 10.1016/s0895-7177(98)00065-x